
OSMIC Development Tools for STLUX and STNRG include Cosmic's market-standard
cxstm8 compiler for the STLUX & STNRG family and a special version of Cosmic's ZAP

debugger specifically developped for STLUX and STNRG devices.
C
The I.D.E.A. Windows editor provides a complete Integrated Development Environment under Windows.
It offers instant access to a fully-integrated editor, project manager, compiler, linker, utilities, and the
highly intuitive source-level debugger ZAP.

The CXSTM8 compiler is field tested, reliable, and incorporates many features that help ensure your

embedded STLUX & STNRG design meets and exceeds performance specifications both for code size

and speed.

The ZAP Debugger is a full featured C and Assembly language source-level debugger for embedded

applications. In its STLUX & STNRG version, ZAP has been adapted to provide useful specific features

such as trasparent option bytes programming.

Microcontroller Specific Design

cxstm8 is the market standard compiler for the STM8
architecture that is the core of the STLUX & STNRG
family of microcontrollers; all STLUX & STNRG family
processors are supported. A special code generator
and optimizer targeted for the STLUX & STNRG family
eliminates the overhead and complexity of a more
generic compiler. You also get header file support for
many of the popular STLUX & STNRG peripherals, so
you can access their memory mapped objects by name
either at the C or assembly language levels. C level
support is provided for Short Addressing and Bit
Variables. Code generated by the SMED configurator is
compiled automatically and transparently.

ANSI / ISO Standard C

This implementation conforms with the ANSI and ISO
Standard C specifications which helps you protect your
software investment by aiding code portability and
reliability.

Page 1

COSMIC Compiler and Debugger

for ST Microelectronics

STLUX & STNRG
Family

Key Features

Supports All STLUX & STNRG chips
SMED configurator support

Option bytes in the source code support
Global and Processor-Specific

Optimizations
C support for Zero Page Data

C support for Bit Variables
C support for Interrupt Handlers

In-Line Assembly

COSMIC C Cross Compiler Product Description Supporting ST Microelectronics STLUX & STNRG

Memory Models for different
applications

The Compiler provides 2 different memory models
depending on the size of the application. For
applications smaller that 64k, the “section 0” memory
model provides the best code density by defaulting
function calls and pointers to 2 bytes. For applications
bigger than 64k, the standard memory model provides
the best flexibility for using easily the linear addressing
space. Each model comes with its own set of libraries.

Optimizations

The Compiler includes global and microcontroller
specific optimizations to give your application maximum
chance of meeting and exceeding its performance
specifications. You retain control over optimizations via
compile-time options and keyword extensions to ANSI
C, so you can fine tune your application code to match
your design specification.

Example of STLUX & STNRG specific optimizations
include:

 Function arguments can be passed char-sized
without widening to int.

 Commonly used static data can be selectively,
using the @tiny keyword, or globally, using a
compile-time option, placed into zero page memory
(the first 256 bytes of memory) to decrease access
time.

 The Code Factorization optimization replaces
duplicated chunks of code by grouping them into
subroutines.

 Assembler instructions rearrangement allows to
avoid pipeline stalls for the best performance.

 Strict single-precision (32-bit) floating point
arithmetic and math functions. Floating point
numbers are represented as in the IEEE754
Floating Point Standard.

 Other optimizations include: branch shortening
logic, jump-to-jump elimination, constant folding,
elimination of unreachable code, removal of
redundant loads/stores, and switch statement
optimizations.

Controller Specific Extensions to ANSI C

The Compiler includes several extensions to the ANSI
C standard which have been designed specifically to
give you maximum control of your application at the C
level and to simplify the job of writing C code for your
embedded STLUX & STNRG design :

 You can define in-line assembly using _asm() to
insert assembly instructions directly in your C code
to avoid the overhead of calling assembly language
subroutines.

 Also you can use #asm/#endasm to insert assembly
instructions directly in your C code.

 You can declare bit variables (_Bool type) packed
into bytes by the compiler for global and local

variables. The bit instruction will be used wherever
possible.

 You can define C functions as interrupt handlers
using the @interrupt keyword. Compiler saves
volatile registers for handling exceptions and
interrupts.

 You can define a C object or C function to have an
absolute address at the C-level, using the
@<address syntax appended to you data
definition; this is useful for interrupt handlers written
in C and for defining memory mapped I/O.

This is useful to add option bytes values directly in
the source code.

 You can define char- and int-sized bitfields, and
select bit numbering from right-to-left or left-to-right.

Additional Compiler Features

 Full C and assembly source-level debugging
support.

 Absolute and relocatable listing file output, with
interspersed C, assembly language and object
code; optionally, you can include compiler errors
and compiler optimization comments.

 Extensive and useful compile-time error diagnostics.

 Fast compile and assemble time.

 Full user control over include file path(s), and
placement of output object, listing and error file(s).

 All objects are relocatable and host independent.
(i.e. files can be compiled on a workstation and
debugged on a PC).

 Function code and switch tables are generated into
the code (.text) section. Constant data such as
string constants and const data are generated into a
separate program (.const) section.

 Initialized static data can be located separately from
uninitialized data or data initialized to zero.

 All function code is (by default) never self-modifying,
including structure assignment and function calls,
so it can be shared and placed in ROM.

 Code is generated as a symbolic assembly
language file so you can examine compiler output.

 The compiler creates all its tables dynamically on
the heap, allowing very large source files to be
compiled.

 Common string manipulation routines are
implemented in assembly language for fast
execution.

Assembler

The COSMIC STLUX & STNRG assembler, caSTM8,
supports macros, conditional assembly, up to 255
named program sections, includes, branch
optimizations, expression evaluation, relocatable or
absolute output, relocatable arithmetic, listing files and
cross references. The assembler also passes through
line number information, so that COSMIC’s ZAP

Page 2

COSMIC C Cross Compiler Product Description Supporting ST Microelectronics STLUX & STNRG

debugger can perform full source-level debug at the
assembly language level.

Linker

The COSMIC linker, clnk, combines relocatable object
files created by the assembler, selectively loading from
libraries of object files made with the librarian, clib, to
create an executable format file.

clnk features:

 Flexible and extensive user-control over the linking
process and selective placement of user application
code and data program sections.

 Multi-segment image construction, with user control
over the address for each code and data section.
Specified addresses can cover the full logical
address space of the target processor with up to
255 separate segments. This feature is useful for
creating an image which resides in a target memory
configuration consisting of scattered areas of ROM
and RAM.

 Generation of memory map information to assist
debugging, including the full call tree.

 All symbols and relocation items can be made
absolute to prelocate code that will be linked in
elsewhere.

 Symbols can be defined, or aliased, from the Linker
command File.

Librarian

The COSMIC librarian, clib, is a development aid which
allows you to collect related files into one named library
file, for more convenient storage. clib provides the
functions necessary to build and maintain object
module libraries. The most obvious use for clib is to
collect related object files into separate named library
files, for scanning by the linker. The linker loads from a
library only those modules needed to satisfy
outstanding references.

Absolute Hex File Generator

The COSMIC hex file generator, chex, translates
executable images produced by the linker to one of
several hexadecimal interchange formatsStandard Intel
hex format.

 Motorola S-record and S2 record format.

 Rebiasing of text and data section load addresses.
Allows you to generate hex files to load anywhere
and execute anywhere in the target system address
space.

Absolute C and Assembly Language
Listings

Paginated listings can be produced to assist program
understanding. Listings can include original C source
code with interspersed assembly code and absolute
object code. Optionally, you can include compiler errors
and optimization comments.

Debugging Utilities

The cross compiler package includes utility programs
which provide listings for all debug and map file
information. The clst utility creates listings showing the
C source files that were compiled to obtain the
relocatable or executable files. The cprd utility extracts
and prints information on the name, type, storage class
and address of program static data, function arguments
and function automatic data.

ZAP Debugger

ZAP is a full featured source-level debugger available
for Windows. ZAP's intuitive graphical interface is
uniform for all targets and execution environments.
ZAP for STLUX and STNRG is available for the STLink
hardware and supports all the existing devices.
In its STLUX & STNRG version, ZAP has been
adapted to provide useful specific features such as
trasparent option bytes programming.

Page 3

